
      Disaster Advances                                                                                                                    Vol. 16 (12) December (2023) 

https://doi.org/10.25303/1612da01011        1 

Predictability of Tropical Cyclone Rapid Intensification 
based on Statistical Approach 

Nga Pham Thi Thanh1, Thang Van Vu1, Ha Pham-Thanh2*, Nam Quang Pham3 and Hiep Van Nguyen4 

1. Vietnam Institute of Meteorology, Hydrology and Climate Change, VIETNAM 

2. Faculty of Hydrology, Meteorology and Oceanography, VNU University of Science, Vietnam National University, Hanoi, VIETNAM 

3. Center for Environmental Fluid Dynamics, Vietnam National University - University of Science, VIETNAM 

4. Northern Delta and Midland Regional Hydro-Meteorological Center, Viet Nam Meteorological and Hydrological Administration, VIETNAM 

*phamthanhha.k56@hus.edu.vn 

 

Abstract 
This study investigated the spatial and temporal 

characteristics of rapid intensification (RI) in the 

Vietnam East Sea (VES) and evaluated the 

predictability of RI using statistical methods. For the 

purpose of the RI study, this work focused on a dataset 

of TCs that reach storm level higher, or having a 

maximum intensity of at least 34 knots (kn) during their 

existence. The results show that the annual TC activity 

in the VES is characterized by a dominance of strong 

TCs (Category 12 and above) and a significant 

occurrence of RI-TCs accounting for 73.7% and 23% 

of the total respectively. Remarkably, RI-TCs were 

consistently observed in 26 out of the 31 years studied, 

with a tendency to occur during the latter months of the 

year.  

 

Additionally, approximately 20% of these RI-TCs 

underwent RI near the Vietnam Coastal region. Given 

the increasing demand for accurate RI forecasts, four 

probability models namely Linear Discriminant 

Analysis (LDA), Logistic Regression (LogR), Naïve 

Bayes Classifier (Bayes) and Ensemble, using 

predictors from the SHIPS dataset, are developed to 

evaluate the predictability of the RI forecast. Among 

the predictors used, thermodynamic factors such as 

COHC, vertical wind shear (SHRD) and current TC 

states (PER) play crucial roles in constructing the RI 

probability models. Verification indices such as POD, 

FAR, CSI and BSS, indicate significant improvements 

in RI forecasting over the VES when utilizing the 

probability models, especially with the ensemble 

method. 
 

Keywords: Rapid intensification, Probability models, TCs, 

Vietnam East Sea. 

 

Introduction 
Intensity forecasts of tropical cyclones (TCs) have been 

challenging tasks. Forecasting rapid intensification (RI) is 

even more complicated because the RI process is a multi-

scale interaction process11. Overall, this process is 

modulated by large-scale environmental forcing, 
thermodynamics of the ocean and inner core processes of the 
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TC27. Studies have investigated the synoptic flow patterns 

associated with RI to identify favorable environments for RI 

development. In particular, Chen et al2 identified certain 

thresholds for sea surface temperature (SST), vertical wind 

shear (VWS), low-level relative humidity (RH) and 200 hPa 

relative eddy angular momentum flux convergence that 

proved effective for RI classification in the Vietnam East 

Sea (VES, which also called the South China Sea).  

 

Shieh et al24 studied Severe Typhoon Vicente (1208) in the 

VES and found that the passage of an upper-tropospheric 

(UT) "inverted" trough significantly influenced the RI 

process. The tropical upper-tropospheric trough enhanced 

the upper-level poleward and equatorial outflow of severe 

typhoon vicente. The passage of the trough also lowered 

VWS. Vicente underwent RI in a strong divergence and low 

VWS environment without a significant increase in SST and 

tropical cyclone heat potential (TCHP). Additionally, 

Mercer and Grimes18 pointed out that mid and upper-level 

temperature fields, near-surface and upper-level 

geopotential height and near-surface relative humidity were 

the best classifiers for RI/non-RI, based on three reanalysis 

datasets: the NCEP/NCAR reanalysis dataset (NNRP – 11), 

the NCEP-DOE Reanalysis II dataset (DOE – 12) and the 

20th-century Regional Reanalysis dataset (20th – 13) along 

with the NHC Atlantic Hurricane database for 1985 to 2009. 

 

Besides the large-scale atmospheric circulation, the 

thermodynamic processes of the ocean have also been 

widely studied to understand the mechanisms of RI in TCs. 

A study by Gray7 highlighted the significance of  SST as one 

of the most important factors for TC formation. Warmer 

SSTs create favorable thermodynamic conditions for TC 

development as supported by the maximum potential 

intensity (MPI) theories proposed by Emanuel4,5 and 

Holland.8 

 

However, in the case of the Western North Pacific (WNP), 

studies by Knaff et al14 and Zeng et al31 demonstrated a 

weaker correlation between SST and MPI. Specifically, even 

though SST decreases for stronger intensities, the 

relationship is less significant. Instead, studies by Shay et 

al23 and Chih and Wu3 showed that the total heat content of 

the upper ocean, known as the tropical cyclone heat potential 

(TCHP) or ocean heat content (OHC), which considers the 

underlying oceanic thermal structure, is a more indicative 

factor than SST. The RI of TCs showed statistically 

significant differences in the upper OHC but was not 

sensitive to SST. This discrepancy is due to the stronger 
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impact of entrainment mixing and upwelling processes on 

the upper OHC compared to their effects on SST.  

 

The results suggest that MPI and SST may be inadequate for 

classifying or predicting TC intensity accurately. 

Furthermore, several studies have shown that the presence 

of oceanic eddies is often associated with RI. For instance, 

Shay et al23 proposed that a warm core eddy in the Gulf of 

Mexico played a role in the RI of Hurricane Opal in the 

Atlantic. In the northeastern Tropical Pacific, Oropeza and 

Raga19 investigated the role of oceanic eddies in the rapid 

and/or explosive deepening of TCs during the period 1993-

2009. Their results indicated that oceanic eddies play a vital 

role in the intensification and RI of TCs.  

 

Lin et al17 analyzed observations of category 5 cyclones 

including Hurricane Katrina (2005), Rita (2005), Mitch 

(1998) and Supertyphoon Maemi (2003) to assess the 

importance of the background climatological upper ocean 

thermal structure on the sea surface height anomaly features. 

The results showed that when the background warm layer is 

deep, it is not critical for a TC to pass over positive features, 

as the background itself is already sufficient to limit the self-

induced cooling negative feedback during intensification. 

 

Previous studies have demonstrated the crucial role of inner-

core processes in tropical cyclone intensity change. Recent 

studies by Knaff et al15,16, Weatherford28, Kieper and Jiang12, 

Xu and Wang30 and Carrasco et al1 have highlighted the 

significant contributions of TC size and inner-core size to the 

intensification process. These findings suggest that smaller 

storms and those with the coldest brightness temperatures 

near the center are more likely to experience rapid 

intensification. Consequently, inner-core information has 

been used as a valuable predictor in discriminating rapid 

intensification in studies by Knaff et al15 and Tam et al.27 

 

Accurate forecasts of RI are of practical importance for 

society due to their detrimental impacts on coastal livelihood 

and properties21,24. Numerous studies have evaluated the 

skill of RI forecasts using both statistical and dynamical 

approaches in basins worldwide including the Atlantic and 

WNP. Indeed, the feasibility of statistical prediction for RI-

TCs has been demonstrated in several studies. These studies 

have shown that it is possible to develop statistical models 

based on various environmental predictors to forecast the 

probability of RI events. Kaplan et al10 developed a rapid 

intensity index (RII) for the Atlantic and eastern North 

Pacific basins. The RII utilizes linear discriminant analysis 

with large-scale predictors from the Statistical Hurricane 

Intensity Prediction Scheme (SHIPS) to estimate the 

probability of RI over the succeeding 24 hours.  

 

The results showed that the probabilistic RII forecasts 

outperformed climatology in both basins. However, the RII 
exhibited modest probability of detection (POD) values 

ranging from 15% to 73% and relatively high false alarm rate 

(FAR) values ranging from 53% to 83%, indicating the 

difficulty of predicting RI, particularly in the Atlantic basin. 

The authors suggested that incorporating more detailed 

inner-core information may improve the skill of the RII due 

to its reliance on large-scale predictors. Rozoff and Kossin23 

incorporated data from the SHIPS dataset into logistic 

regression and naive Bayesian models to build probabilistic 

predictions of rapid intensity change in tropical cyclones 

over the North Atlantic and eastern North Pacific Ocean 

basins. The results demonstrated that the logistic regression 

and Bayesian probabilistic models outperformed 

climatology and the linear discriminant analysis 

probabilistic models. Additionally, combining the 

probabilities from the logistic regression, Bayesian and 

SHIPS-RII models through a simple average yielded better 

performance than any individual model. For the rapid 

intensification threshold of 25 kn/24hr, the Brier skill scores 

of the three-member ensemble were 33% and 52% higher 

than the existing SHIPS-RII scores in the North Atlantic and 

eastern North Pacific respectively. 

 

Vietnam, situated on the western margin of the WNP with a 

coastline of over 3,000 km, experiences significant impacts 

from TCs activity in the VES. Many studies15,26,27 have 

evaluated the skills of  RI forecasts for the WNP. Therefore, 

given the demand for RI information in Vietnam, this study 

aims to investigate: 1) the characteristics of RI and 2) the 

predictability of RI based on a statistical approach for the 

VES.  

 

Material and Methods 
TC Data: The WNP TC best track data from the Joint 

Typhoon Warning Center (JTWC) over the VES, limited to 

the range of longitude from 100°E to 120°E and latitude 

from 5°N to 23°N in 31-year period from 1990 to 2020 were 

used in this study. JTWC data were obtained directly on the 

homepage https://www.metoc.navy.mil/jtwc/jtwc.html? 

western-pacific including TC central position, minimum sea 

level pressure (Pmin) and maximum sustained wind (Vmax) 

information for each storm reaching tropical depression. The 

maximum wind speed here is the 1-minute average wind and 

the data are formatted with time steps six-hourly to ensure 

uniform ∆V calculation over time of change ∆t. 

Furthermore, to reduce the uncertainty in detecting weak 

TCs such as tropical depressions14, the study only considers 

TCs that reach storm level higher or having a maximum 

intensity of at least 34 knots (kn) during their existence. 

 

RI definition: Previous studies9,10,15,25 have used the 95th 

percentile of ∆Vs as the threshold for identifying RI. In line 

with these studies, the 95th percentile of ∆Vs within a 24-

hour period is utilized to identify observed RI-TCs. These 

results will be employed to investigate the characteristics of 

RI-TCs over the VES. Additionally, since we use the 

observed RI-TC as predictand to train our probability 

models, its definition significantly influences the 

performance of RI forecasts. Therefore, we adopt the 95th 

percentiles of ∆Vs at different time intervals such as 12, 24, 

36 and 48 hours, for defining RI to assess the role of 

https://doi.org/10.25303/1612da01011
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predictors and to evaluate the performance of probability 

models. To provide clarity, the values of the 95th percentiles 

of ∆Vs at 12, 24, 36 and 48 hours are +15kn, +25kn, +35kn 

and +45kn respectively. 

 

Construction of RI probability models: Construction of 

the RI forecast follows the same approach as previous 

studies9-11. In the development phase, we use predictors from 

the SHIPS dataset (RAMMB)20 which describe the 

environmental conditions and information about the current 

TC state to forecast the probability of RI. The selected 

predictors are based on previous studies15,16,27. A list of 

predictors is shown in table 1.  

 

This study uses probability models such as Linear 

Discriminant Analysis (LDA), Logistic Regression (LogR), 

Naïve Bayes Classifier (Bayes) and Ensemble which have 

been previously demonstrated as skillful in RI forecasting9-

11,27. The first three models (LDA, LogR and Bayes) are 

individually used to generate statistical forecasts of RI 

occurrence based on the provided predictors. The specific 

methodologies for these models can be found in the previous 

studies9-11,27. The ensemble method is defined as the simple 

ensemble mean of the RI probability results from the three 

mentioned models (LDA, LogR and Bayes).  

 

The performance of the probability models was assessed 

using several metrics including POD (Probability of 

Detection), FAR (False Alarm Rate), CSI (Critical Success 

Index) and BSS (Brier Skill Score), on training data (from 

1990 to 2020) and testing data (from cross-validation). The 

BSS is given by the formula BSS = 1 - (BSf / BSr) where BSf 

represents the Brier Score of the forecasts and BSr represents 

the Brier Score of the reference29. In this study, the reference 

for BSS calculation is the climatology of observed RI events. 

  

Results and Discussion 
Spatial and Temporal Distribution of RI-TCs: Figure 1 

shows the variations in the number of TC activities across 

different categories and periods within the VES region from 

1990 to 2020. On average, approximately 9 TCs occur 

annually in the VES. About 73.7% of these TCs reach 

category 12 or higher on the Beaufort scale (i.e. Vmax above 

64kn). Specifically, around 4.4 TCs per year fall within the 

category 12-13 range (i.e. Vmax from 64kn to 80kn) and 

approximately 2.3 TCs per year are classified above 

category 13 (i.e. Vmax above 80kn). Approximately 2.1 TCs 

per year underwent rapid intensification (RI) identified using 

the 95th percentile of ∆Vs (change in wind speed) within 24 

hours. These RI-TCs account for approximately 23% of the 

total TC activity in the region.  

 

Additionally, RI-TCs were documented in 27 out of the 31 

years and TCs reaching above category 13 were observed in 

26 out of the 31 years. This indicates the dominant 

occurrence of strong TCs and RI-TCs within the VES. 

Figure 2a shows the probability of TC occurrences in 

different categories for each month throughout the year. The 

results indicate that TC activity in the VES is concentrated 

from June to December with a particularly notable 

concentration in July, August and September.  

 

The occurrence probability for each of these months is 

approximately 83%. In terms of temporal distribution, 

stronger TCs tend to occur in the later months of the year. 

Specifically, TCs in category 12-13 show a concentration 

from July to September while TCs classified above category 

13 exhibit a higher occurrence probability from September 

to November. 

 

Additionally, the occurrence probability of RI-TCs is 

notably higher from July to September compared to other 

months. The occurrence probability of RI-TCs remains 

consistently higher than that of TCs classified above 

category 13 throughout most months of the year, except for 

October, November and December. Notably, the occurrence 

probability of both RI-TCs and TCs with intensities above 

category 13 is highest in September with a value of 45%.

 

Table 1 

List of predictors 

S.N. Predictor Definition 

Environmental predictors 

1 
COHC Ocean heat content evaluated at the point closest to the TC (equals to 0 if SST is 

below 26 C) 

2 D200 200 hPa divergence averaged over 1000 km radial distance from the TC centre 

3 
SHRD 200–850 hPa space mean vertical wind shear averaged 200-800 km radial 

distance from the TC centre 

4 
VMPI Maximum potential intensity from Kerry Emanuel equation, as a function of 

SST at the storm center and the current intensity 

5 RHHI 300–500 hPa RH averaged 200-800 km radial distance from the TC centre 

6 
TADV The temperature advection between 850 and 700 hPa averaged from 0 to 500 km 

Estimated from the geostrophic thermal wind (deg per sec*106) 

Best-track/advisory-based predictors 

7 PER Persistence: previous 12 hr intensity change 

8 CI Current intensity 
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Figure 2b shows the proportions of RI events among TCs 

categorized below category 12, category 12-13 and above 

category 13. The results indicate that approximately 69% of 

RI events occur with TC intensities classified above category 

12. This suggests the importance of considering TCs 

categorized with higher intensity levels when analyzing RI 

occurrences. 

 

Figure 3 shows the best tracks of RI-TCs activity in the VES 

with denoted points where RI occurred each month from 

June to November, spanning the years 1990 to 2020. Overall, 

the results indicate a southward shift in the tracks and 

landing sites of tropical cyclones over time. Between June 

and September, the majority of TCs occurred north of 12°N 

in the VES, with landfalls predominantly observed in the 

North Central region of Vietnam. However, during October 

and November, there was a noticeable shift in the favorable 

areas for TC formation, moving southward below 18°N. 

Consequently, the landing sites became concentrated in the 

South Central region. Figure 3 also illustrates that 

approximately 34.5% of the locations where rapid 

intensification occurs within the boundaries of the VES 

during the peak TC months (from June to November).

 

 
Figure 1: Number of TCs activities in the VES across all categories (column a), Category 12-13 (C12-13, column b), 

above Category 13 (AC 13, column c) and rapid intensification (RI, column d) for the period 1990-2020, divided into 

December to May (row 1), June (row 2), July (row 3), August (row 4), September (row 5), October (row 6), November 

(row 7) and the entire year (row 8) from 1990 to 2020. 

 

 
Figure 2: a) Probability of TC occurring at Category 12-13 (C12-13), above Category 13 (AC13) and RI for the 

period 1990-2020 (b) Percentage of RI occurring at below Category 12 (BC12), Category 12-13 (C12-13) and above 

Category 13 (AC13) for the period 1990-2020 

https://doi.org/10.25303/1612da01011
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Figure 3: Best track of RI-TCs (left) and non-RI-TCs (right) in VES from June to November over  

the period 1990-2020. RI event symbol (×, red), forming point (•, black) 

 

This suggests that the VES provides favorable conditions for 

the RI of TCs. Notably, among RI-TCs activity in the VES, 

approximately 20% experience RI near the Vietnam Coastal 

region, specifically in the western area around the longitude 

of 110oE. The concentration of RI events within the VES 

region, especially near the Vietnam Coastal region, 

highlights the necessity of enhancing knowledge and 

forecasting capabilities to minimize the impact of RI-TCs on 

vulnerable coastal areas. 

 

Predictability of RI forecasts over the VES 

RI predictors: Given the high demand for RI forecasts, the 

primary objective of this study is to assess the predictability 

of RI of TCs over the VES using statistical methods. The 

https://doi.org/10.25303/1612da01011
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predictors used in this study were obtained from the SHIPS 

dataset and have been used in previous studies10,15,16,27 to 

develop statistical models for forecasting the RI of TCs. 

 

Analyzing these predictors could provide information about 

favorable conditions for the occurrence and development of 

RI events, specifically atmospheric conditions (e.g. D200, 

SHRD, VMPI, RHHI, TADV), oceanic factors (COHC) and 

TC current-state information (PER, CI). It is noted that an 

observed RI event is defined when the maximum sustained 

wind speed of a TC intensifies by at least 25 knots within 24 

hours. The results from table 2 indicate that high ocean heat 

(e.g. COHC), low wind shear (e.g. SHRD) and high 

divergence at the high level (e.g. D200) are favorable for 

enhancing convective processes. The increased convective 

activity of TCs is reflected by higher moisture at the mid-

level (e.g. RHHI). The release of latent heat from convective 

processes serves as an energy source for intensification, as 

evidenced by the high values of VMPI, PER and VMAX. 

The results are qualitatively in line with previous 

studies6,10,27 on favorable conditions for RI occurrence. 

Furthermore, table 2 shows that the difference in means of 

all selected predictors between RI and non-RI events is 

statistically significant at the 99.9% level as determined by 

the t-test. This implies that all selected predictors have the 

potential to distinguish and identify RI events, making them 

valuable in constructing RI probability models, particularly 

for the VES region. Therefore, all predictors were used to 

develop probability models of RI-TC occurrence in this 

study. 

 

To objectively evaluate the contribution of predictors in 

forecasting RI events, we calculated relative weights 

associated with each predictor in those three statistical 

models for various RI definitions. Figure 4 shows the diverse 

relative weights of each predictor between four RI 

definitions (e.g. +15kn/12hr, +25kn/24hr, +35kn/36hr and 

+45kn/48hr) and among three probability models (e.g. LDA, 

LogR and Bayes).

 

Table 2 

Mean and SD of RI and Non-RI, with threshold +25 kn/24 hr 

Predictor Unit 
RI 

(mean) 

RI 

(SD) 

Non–RI 

(mean) 

Non–RI 

(SD) 

RI - Non–RI 

(mean) 

Significance 

level 

COHC kJ/cm2 92.5 24.9 72.5 28.2 +20.0 99.9th 

D200 10-7 s-1 71.7 42.6 53.2 37.6 +18.5 99.9th 

SHRD kn 11.4 5.7 15.2 7.4 -3.8 99.9th 

VMPI kn 147.5 10.6 140.2 17 +7.3 99.9th 

RHHI % 68.7 11.3 64 12.9 +4.7 99.9th 

TADV deg 106 -0.4 4.5 0.6 6.1 -1.0 99.9th 

PER kn 10.4 7.9 2.9 9.3 +7.5 99.9th 

VMAX kn 57.6 21.5 53.4 28.6 +4.2 99.9th 

 

 
Figure 4: The relative weights for each RI predictors based on training data for different RI definition  

including a) +15kn/12hr; b) +25kn/24hr; c) +35kn/36hr; d) +45 kn/48hr 
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Overall, among the eight predictors used to construct RI 

probability models, PER, COHC and SHRD have emerged 

as playing significant roles compared to the other predictors. 

Their importance is evident from the notably high 

magnitudes of their relative weights, even when considering 

variations in the definition of RI events (Fig. 4). 

 

The relative weights of the thermodynamic predictors (e.g. 

COHC), the vertical wind shear (e.g. SHRD) and current TC 

states (e.g. PER) consistently appear higher, approximately 

twice as much as the other predictors across all four RI 

definitions. This suggests that for the VES, thermodynamic 

conditions and vertical wind shear are vital factors 

influencing the occurrence of RI. Additionally, the change 

in TC intensity over 12 hours (e.g. PER) shows the highest 

correlation with COHC compared to other predictors (not 

shown). This indicates that the thermodynamic condition, as 

represented by COHC, is the most crucial factor for RI 

processes and the primary predictor for developing RI 

forecasts in the VES.  

 

Evaluation of RI probability models: Four probability 

models including LDA, LogR, Bayes and Ensemble were 

used to predict the RI over the VES based on the predictors 

from the SHIPS dataset. Figure 5 shows the probability 

distributions of RI and non-RI cases for the four RI 

probability models based on training data (from 1990 to 

2020) and testing data (from cross-validation). Overall, the 

probability distributions from each model are consistent 

between the two types of datasets for both RI and non-RI 

cases. This suggests that all models are highly stable for RI 

forecasting. Besides that, there is agreement among the four 

probability models regarding the distribution of non-RI 

events.  

 

The frequency of non-RI events is predominantly found at 

small probabilities with over 80% occurrence at probability 

levels less than 0.2. However, the shapes of the RI 

probability distribution vary among the four models. The 

results obtained from the LDA model show some similarities 

to those derived from the LogR model and ensemble model, 

particularly with a higher frequency observed around 

probabilities ranging from 0.1 to 0.4.  

 

In contrast, the Bayes model demonstrates improved 

forecasting performance in capturing the occurrence of 

higher probabilities of RI. However, the Bayes model has the 

highest frequency at a probability value of 0, indicating a 

relatively higher frequency of non-RI cases predicted by the 

model compared to other models. The differences observed 

in the probability distributions generated by each model 

highlight the importance of selecting the optimal threshold 

for the forecasted probability to define the occurrence of RI 

for each specific model. Choosing the appropriate threshold 

is crucial in correctly identifying RI events and minimizing 

errors such as misses and false alarms in the RI forecasts. 

 

 
Figure 5: The probability distributions of RI (column 1 for training data and column 3 for testing data) and non-RI 

cases (column 2 for training data and column 4 for testing data) based on LDA (row 1), LogR (row 2), Bayes (row 3) 

and Ensemble (row 4). 

https://doi.org/10.25303/1612da01011
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Figure 6 displays the performance of four models (LDA, 

LogR, Bayes and Ensemble) for different RI thresholds, 

ranging from 0 to 1.0. The RI threshold refers to the 

minimum forecasted probability indicating the occurrence of 

RI. The models were trained on data from 1990 to 2020 and 

tested using cross-validation. The distribution of verification 

indexes (POD, FAR and CSI) based on the different RI 

thresholds shows similarities between the training and 

testing data. This indicates that the models exhibit stability 

and reliability in predicting RI events, as their performance 

remains consistent across different datasets. 

 

The performance of the LDA and LogR models, as measured 

by POD, FAR and CSI, is quite similar at all RI thresholds. 

This similarity is reflected in the high consistency of the 

probability distribution for RI and non-RI events from these 

models (Figure 5). For all models, the POD values tend to 

decrease as the RI threshold increases. When comparing the 

models, the LDA and LogR models have a higher POD than 

the Bayes and Ensemble models at low RI thresholds (below 

0.15). Conversely when using a high threshold to indicate 

the occurrence of RI, the Bayes and Ensemble models have 

higher PODs than the LDA and LogR models. 

 

Regarding FAR values, both the Bayes and Ensemble 

models show a decreasing trend as the RI threshold 

increases, indicating that these models perform better at 

avoiding false predictions as the threshold becomes stricter. 

In contrast, the LDA and LogR models show a decreasing 

trend in FAR values as the RI threshold increases, but once 

the chosen threshold exceeds 0.5, the FAR tends to increase. 

This suggests that the Bayes and Ensemble models are better 

than the LDA and LogR models when selecting a high RI 

threshold (e.g. above 0.5) to reduce false predictions. 

 

The distribution of CSI points reveals that the performance 

of each model heavily depends on the probability threshold 

used to indicate the occurrence of RI events. Overall, the CSI 

values for all four models range from 0 to 0.3. The forecasts 

based on the LDA and LogR models show high CSIs when 

the RI threshold is around 0.2.

 

 

Figure 6: The performance of LDA (black line), LogR (blue line), Bayes (red line) and Ensemble (cyan line) for 

different RI thresholds (minimum probability to indicate the occurrence of RI) based on training data (1990-2020). 

Noted that observed RI event is defined when the maximum sustained wind speed of a TC intensifies by at least 25 

knots within 24 hours. 

https://doi.org/10.25303/1612da01011
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Figure 7: The BSS values for the RI forecasts are based on 4 models including LDA, LogR, Bayes and Ensemble, with 

different observed RI definitions. Specifically, observed RI event is defined when the maximum sustained wind speed 

of a TC intensifies by at least a) +15kn/12hr; b) +25kn/24hr; c) +35kn/36hr; d) +45kn/48hr. 
 

In contrast, the ensemble model demonstrates high CSIs 

over a wide range of RI thresholds, specifically from 0.2 to 

0.4. Similarly, the Bayes model shows high CSIs across a 

broader range of RI thresholds, specifically from 0.3 to 0.6. 

This suggests the consistent performance of the ensemble 

and Bayes models in correctly predicting the occurrence of 

RI events across different RI thresholds. 

 

It is noted that the performance of RI probability models 

depends on the specific definitions of observed RI events. 

Therefore, the BSS is calculated for different observed RI 

definitions in both the training and testing datasets to 

evaluate the models' ability to predict RI occurrences. These 

RI definitions differ based on the minimum increase in the 

maximum sustained wind speed required to identify RI 

occurrences, specifically, the thresholds considered are 

+15kn/12hr, +25kn/24hr, +35kn/36hr and +45kn/48hr. 

Figure 7 shows that all probability models including LDA, 

LogR, Bayes and Ensemble, demonstrate good performance 

compared to climatology forecasts in predicting the 

occurrence of RI regardless of the specific RI definition. 

This is reflected by the positive BSS values (above 20% in 

Fig. 7) obtained for both the training and testing data as well 

as for different RI definitions.  

 

Furthermore, the forecasts generated by the ensemble model 

have the highest BSS (approximately 30%) compared to 

those from the LDA, LogR and Bayes models. This suggests 

that the ensemble model provides more accurate and skillful 

predictions of RI events. For the Bayes model, despite its 

strengths in detecting RI events (shown by the verification 

indexes such as POD, FAR and CSI), the BSS values are 

lower due to its high extreme probability distributions (Fig. 

5) when compared to other models. 

 

Conclusion  
The study uses the 95th percentile of ∆Vs (change in wind 

speed) within 24 hours to identify observed RI-TCs in the 

VES. The results show that the annual TC activity in the 

VES is characterized by a dominance of strong TCs 

(Category 12 and above) and a significant occurrence of RI-

TCs, which account for 73.7% and 23% of the total 

respectively. RI-TCs are consistently observed in 26 out of 

the 31 studied years and tend to occur in the latter months of 

the year, indicating their high-frequency occurrences in the 

VES region.  

 

Additionally, around 20% of these RI-TCs experience RI 

near the Vietnam Coastal region, specifically in the western 

area around the longitude of 110°E. The high frequency and 

concentration of RI events within the VES region, 

particularly near the Vietnam Coastal region, emphasize the 

importance of enhancing knowledge and forecasting 

capabilities to minimize the impact of RI-TCs on vulnerable 

coastal areas. Given the increasing demand for accurate RI 
forecasts, this study employed four probability models 

namely LDA, LogR, Bayes and Ensemble, utilizing 

predictors from the SHIPS dataset, to assess the 
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predictability of RI over the VES. The results demonstrate 

that the selected predictors which describe atmospheric 

conditions (e.g. D200, SHRD, VMPI, RHHI, TADV), 

oceanic factors (COHC) and information about the current 

state of the tropical cyclones (PER, CI), are consistent with 

previous studies6,10,27 in representing the favorable 

conditions for RI occurrences over the VES.  

 

While all the predictors show the potential to distinguish and 

identify RI events, the study finds that vertical wind shear 

(e.g. SHRD), current TC state (e.g. PER) and especially the 

thermodynamic predictor (e.g. COHC) play pivotal roles as 

primary predictors in developing RI forecasts for the VES. 

Furthermore, a previous study11 highlights that the relative 

weight of PER and SHRD is important for RI forecasting in 

other regions such as the Atlantic and eastern North Pacific 

basins. This suggests that certain predictors may exhibit 

similar importance and influence on RI events across 

different geographical locations. 

 

The performance of four models (LDA, LogR, Bayes and 

Ensemble) in predicting the occurrence of RI is evaluated 

using both training data (from 1990 to 2020) and testing data 

(from cross-validation), employing verification indexes such 

as POD, FAR and CSI. The results demonstrate that the 

distribution of these verification indexes is similar between 

the training and testing data, indicating the stability of these 

models in predicting RI events. Notably, the results highlight 

that the performance of probability models significantly 

depends on the selection of RI thresholds (i.e. the minimum 

forecasted probability to indicate the occurrence of RI).  

 

Overall, the POD and FAR values tend to decrease as the RI 

threshold increases for almost all models. This implies that 

as the threshold becomes stricter, these model performances 

are better at avoiding false predictions. Furthermore, the CSI 

values for all four models range from 0 to 0.3. The LDA and 

LogR models have an optimal threshold of around 0.2 while 

the Ensemble and Bayes models exhibit wider ranges of 

optimal RI thresholds, namely 0.2 to 0.4 and 0.3 to 0.6 

respectively. 

 

Additionally, positive BSS values above 20% were obtained 

for both the training and testing data in different cases of 

defining the observed RI-TCs (e.g. the values of the 95th 

percentiles of ∆Vs at 12, 24, 36 and 48 hours are +15kn, 

+25kn, +35kn and +45kn respectively). The forecasts 

generated by the ensemble model have the highest BSS 

(approximately 30%) compared to those from the LDA, 

LogR and Bayes models. This indicates that all used 

probability models, especially the Ensemble method, offer 

substantial advancements in RI forecasting over the VES 

compared to climatology-based predictions. 
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